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Abstract

In this paper, we propose a deep multi-Task learn-
ing model based on Adversarial-and-COoperative
nets (TACO). The goal is to use an adversarial-and-
cooperative strategy to decouple the task-common
and task-specific knowledge, facilitating the fine-
grained knowledge sharing among tasks. TACO
accommodates multiple game players, i.e., feature
extractors, domain discriminator, and tri-classifiers.
They play the MinMax games adversarially and
cooperatively to distill the task-common and task-
specific features, while respecting their discrimina-
tive structures. Moreover, it adopts a divide-and-
combine strategy to leverage the decoupled multi-
view information to further improve the generaliza-
tion performance of the model. The experimental
results show that our proposed method significantly
outperforms the state-of-the-art algorithms on the
benchmark datasets in both multi-task learning and
semi-supervised domain adaptation scenarios.

1 Introduction
Domain shift [Blitzer et al., 2007] usually refers to the differ-
ence of distributions between the data collected from multi-
ple sources. For example, the images from different domains
may encounter domain shift caused by changes in the cam-
era, image resolution, lighting, background, and viewpoint
[Saenko et al., 2010]. It was shown that even state-of-the-art
deep convolutional neural network (CNN) [Donahue et al.,
2014] learned on millions of instances are susceptible to do-
main shift. On the other hand, it is expensive or unrealis-
tic to collect a large amount of labeled data for each task or
domain. Therefore, deep multi-task learning [Ruder, 2017;
Yang and Hospedales, 2017; Long et al., 2017a] becomes
a promising research direction since it conjoins the strength
of deep learning [LeCun et al., 2015] and multi-task learn-
ing [Caruana, 1993]. The main challenge of deep multi-
task learning is how to decouple task-variance and task-
invariance from deep features while respecting their discrimi-
nativeness. Task-invariance captures the common knowledge
shared across tasks, while task-variance characterizes the spe-
cific property of each task which is distinctive from others.

In this paper, we propose a deep multi-Task learning
method based on Adversarial-and-COoperative nets (TACO)
to address this issue. The main idea is to adopt an
adversarial-and-cooperative strategy to disentangle between
task-invariant and task-variant information, and use the de-
coupled multi-view features to enhance the discriminative-
ness of the model. The TACO network consists of multiple
game players, i.e., feature extractors, domain discriminator,
and triple types of classifier. They play the MinMax games
adversarially and cooperatively to extract both task-common
and task-specific knowledge from data while maintaining
their discriminative structures. On one hand, the feature ex-
tractors compete with the domain discriminator to learn the
task-common knowledge in a domain-adversarial way. It en-
courages the extractors to produce the task-invariant features,
which are indistinguishable by the domain discriminator. On
the other hand, the extractors play with the classifiers to learn
the task-specific knowledge in a classifier-adversarial fashion.
For each task, it encourages each extractor to generate the
task-specific features, which are exclusive to its own classifi-
er. Furthermore, the task-common and task-specific features
naturally form multiple views for the data. Therefore, in order
to make advantage of the complementary benefit from multi-
ple views, we build three types of classifiers, i.e., task-specific
classifier, task-common classifier, and within-task classifier.
The triple classifiers cooperate with each to enhance discrim-
inativeness of the models. We conduct the detailed experi-
ments on both multi-task learning and semi-supervised do-
main adaptation scenarios. The empirical study shows TACO
significantly outperforms the state-of-the-art algorithms. The
main contributions of this work are summarized as follows:

• Adversarial-and-cooperative nets to decouple task-
invariance and task-variance for the fine-grained knowl-
edge sharing among tasks.

• Divide-and-combine strategy to leverage the decoupled
multi-view features to improve the performance.

• Experiments on the benchmark data demonstrating the
effectiveness of the proposed method.

The rest of the paper is organized as follows. Section 2
reviews the related work. The proposed method is presented
in Section 3, followed with the experimental results in Section
4. We conclude the paper in Section 5.
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2 Related Work

Multi-task learning [Caruana, 1993] boosts the performance
of each task by sharing knowledge among related tasks.
A number of multi-task learning methods have been pro-
posed, such as: multi-task feature learning [Argyriou et al.,
2008], clustered multi-task learning [Zhou et al., 2011], low-
dimensional subspace learning [Ji and Ye, 2009], multi-task
relationship learning [Zhang and Yeung, 2010], robust multi-
task learning [Chen et al., 2013], and sparsity-regularized
multi-task learning including weighted Lasso [Lee et al.,
2016], tree-guided fused lasso [Han and Zhang, 2015], gen-
eralized Schatten norm [Yang et al., 2017], etc.

Deep multi-task learning or deep domain adaptation be-
comes to receive attentions owning to its ability of learning
hierarchical features from data and sharing knowledge across
domains. The related approaches can be roughly categorized
into four types: domain-adversarial networks [Ganin and
Lempitsky, 2015; Tzeng et al., 2015; Bousmalis et al., 2016;
Tzeng et al., 2017; Pei et al., 2018], adaptation methods
based on maximum mean discrepancy (MMD) [Long et al.,
2017b; Ghifary et al., 2014; Long et al., 2015; Tzeng et al.,
2014], deep models with tensor prior [Yang and Hospedales,
2017; Long et al., 2017a], and methods based on both feature-
level and instance-level adapations [Hoffman et al., 2018;
Yang et al., 2019]. First, the domain-adversarial neural net-
work [Ganin and Lempitsky, 2015] used adversarial train-
ing [Goodfellow et al., 2014] to promote the emergence of
domain-invariant features via the use of a gradient reversal
layer. In [Tzeng et al., 2015], they simultaneously aligned
domain via domain confusion and aligned source and tar-
get classes via soft labels. The domain separation network-
s [Bousmalis et al., 2016] explicitly modeled both private
and shared components of domain representations. The ad-
versarial discriminative domain adaptation model [Tzeng et
al., 2017] combined discriminative modeling, untied weight
sharing, and a domain-adversarial loss into a unified frame-
work. The multi-adversarial domain adaptation approach [Pei
et al., 2018] captured multimode structures to enable fine-
grained alignment of domains based on multiple domain dis-
criminators. Second, the joint adaptation networks [Long
et al., 2017b] adopted adversarial training strategy to maxi-
mize a joint MMD criterion. The domain adaptive neural net-
work [Ghifary et al., 2014] incorporated MMD measure as a
regularization embedded in the supervised back-propagation
training. DDC [Tzeng et al., 2014] had an MMD loss at
one layer while DAN [Long et al., 2015] had MMD loss-
es at multiple layers. Third, the deep multi-task learning
with tensor factorization model [Yang and Hospedales, 2017]
learned shared feature subspace from multilayer parameter
tensors, while multilinear relationship networks [Long et al.,
2017a] learned multilinear task relationships from multiplay-
er parameter tensors. Some recent methods learn feature-
level and instance-level adaptations simultaneously. The
cycle-consistent adversarial adaptation model [Hoffman et
al., 2018] enforced both structural and semantic consistency
during adaptation using a cycle-consistency loss and seman-
tics loss. The task-adversarial co-generative nets [Yang et al.,
2019] simultaneously learns the marginal distribution of task-
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Figure 1: The high-level architecture of the TACO model.

invariant features across tasks and the joint distributions of
examples with labels for each task.

Most domain-adversarial methods rely on adversarial train-
ing to learn the task-invariant knowledge only. In con-
trast, TACO decouples the task-common and task-specific
features in an adversarial-and-cooperative way, and leverages
their complementary correlations to facilitate the fine-grained
knowledge sharing across tasks.

3 The TACO Method
In this section we introduce the TACO model, together with
the network architecture and the learning algorithm.

3.1 Model
Suppose we have the data from T related tasks. Each task
refers to a multi-class classification problem. There are lim-
ited labeled instances in each task. The goal is to predict the
unlabeled data for each task as accurately as possible by using
TACO to manipulate knowledge sharing among tasks.

Figure 1 shows the high-level architecture of the TACO
method. Let Gi and Gj be the feature extractors for the ith
and jth tasks respectively, where 1 ≤ i, j ≤ T . Each fea-
ture extractor G accepts the instance x and generates its task-
common features u and task-specific features v. The task in-
dex (if applicable) is omitted for brevity. We have three types
of classifiers, i.e., task-common classifier Cu, task-specific
classifier Cv , and within-task classifier Cm. D is the domain
discriminator. H refers to the router, which will be intro-
duced in details in the next subsection. Note that we assume
that there are two tasks in Figure 1 for simplicity. But the
proposed method is directly ready for the multiple (T ≥ 2)
tasks.

TACO is composed of multiple game players, i.e., feature
extractors, domain discriminator, and three types of classi-
fiers. Each game player may include multiple feed-forward
layers. Let θig , θd, θu, θiv , and θim be the learning parameters
for Gi, D, Cu, Civ , and Cim, respectively, where 1 ≤ i ≤ T .
Denote θg = {θig|1 ≤ i ≤ T}, θv = {θiv|1 ≤ i ≤ T},
and θm = {θim|1 ≤ i ≤ T}. Let Lu, Liv , and Lim be the loss
for the task-common classifier Cu, task-specific classifier Civ ,
and within-task classifier Cim respectively. The domain dis-
crimination loss is denoted by Ld.
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TACO aims to learn both task-common and task-specific
knowledge, together with their mutual correlations, in a uni-
fied model.

The first question is how to extract the task-common fea-
tures. We learn the commonality in a domain-adversarial way.
The feature extractors try to make the task-common features
indistinguishable by the domain discriminator, while the do-
main discriminator attempts to predict the domain label as
accurately as possible. Specifically, in order to learn the task-
invariant features, we seek the parameters θg of the feature
extractors that maximize the loss of the domain discrimina-
tor, while simultaneously seeking the parameters θd of the do-
main discriminator that minimize the discriminating loss. On
the other hand, we minimize the loss of task-common classi-
fier to make sure that the task-common features maintain the
label information. Therefore, the MinMax game among the
domain discriminator D, the task-common classifier Cu, and
the feature extractors Gi(1 ≤ i ≤ T ) can be formulated as
follows:

min
θu,θg

max
θd

Lu(θg, θu)− αLd(θg, θd) (1)

where α is a non-negative trade-off parameter. In this Min-
Max game, the feature extractors, domain discriminator, and
the task-common classifier work in a domain-adversarial way
to generate the features which are task-invariant and discrim-
inative.

The second question is how to learn the task-specific fea-
tures. Different from the task-common features shared by
tasks, the task-specific features are exclusive to its own task.
Intuitively, since the task-specific features contain knowledge
for its own task only, the classifiers of the other tasks should
perform bad on these features. Therefore, we learn the task-
variance in a classifier-adversarial way. For each task, it en-
courages the feature extractor to produce the task-specific fea-
tures which minimize the loss of its own task-specific classi-
fier, while maximizing the loss of the task-specific classifiers
for all the other tasks. Specifically, we seek the parameter-
s θig of feature extractor Gi and the parameters θiv of task-
specific classifier Civ that minimize the task-specific loss Liv ,
while simultaneously seeking the parameters θ̃ig = {θjg|j 6=
i, 1 ≤ j ≤ T} of the features extractors for the other tasks
that maximize Liv . Hence, the MinMax game played among
two groups, i.e., {Gi, Ci} and {Gj |j 6= i, 1 ≤ j ≤ T}, can
be formulated as:

min
θiv,θ

i
g

max
θ̃ig

Liv(θ
i
g, θ̃

i
g, θ

i
v) (2)

The multiple players work in the classifier-adversarial way to
generate the features which are task-specific and discrimina-
tive. In total, the task-specific adversarial loss for all the tasks
is as follows:

min
θv,θg

max
θg

∑T

i=1
Liv(θ

i
g, θ̃

i
g, θ

i
v) (3)

The third question is how to further enhance the discrimi-
nativeness of the models by leveraging the decoupled knowl-
edge. The task-common and task-specific features learned
above naturally form multiple views for each task. To ful-
ly take advantage of mutually benefit from multiple views,

we build three types of classifiers, i.e., task-common classifi-
er, task-specific classifier, and within-task classifier. Both the
task-common and the task-specific classifiers are introduced
as above. For within-task classifier Cim(1 ≤ i ≤ T ), it is
trained with the concatenated features, i.e., the combination
of task-common and task-specific features. We seek the pa-
rameter of θig of feature extractor Gi and the parameter θim of
the within-task classifier Cim, which minimizes the loss Lim.
Thus, the loss for the within-task classifiers can be formulated
as:

min
θm,θg

∑T

i=1
Lim(θig, θ

i
m) (4)

The tri-classifiers cooperate with each other to fully leverage
the complementarity among multiple views. We follow the
conventional way of ensemble learning to combine the pre-
dictions. The three classifiers determine the final prediction
of each instance by voting. If neither agrees with each oth-
er, the prediction will be determined by the classifier with the
highest confidence.

In summary, the overall objective function for TACO is for-
mulated as follows:

min
{θu,θv,θm,θg}

max
{θd,θg}

Lu(θg, θu)− αLd(θg, θd)

+
∑T

i=1

[
Liv(θ

i
g, θ̃

i
g, θ

i
v) + Lim(θig, θ

i
m)

] (5)

TACO accommodates multiple game players, i.e., feature ex-
tractors, domain discriminator, and tri-classifiers, in a uni-
fied model. The feature extractors involve in both MinMax
games, where they cooperate to generate the task-common
features, while competing with each other to generate the
task-specific features. In such a way, the multi-players work
in an adversarial-and-cooperative way to distill the task-
common and task-specific features. Moreover, it uses a
divide-and-combine strategy to leverage the decoupled multi-
view information to improve the generalization performance.

3.2 Network
Note that various deep networks can be used as the base ar-
chitecture to build the TACO model. Here we take two of the
most popular CNN networks, i.e., AlexNet [Krizhevsky et al.,
2012] and VGGnet [Simonyan and Zisserman, 2015], as the
base networks to instantialize the TACO model.

The CNN-based TACO architecture is shown in Figure 2.
x represents the input data from all tasks. The backbone is
composed of several convolutional layers (e.g., conv1 - con-
v5 in AlexNet), max-pooling layers, dropout layers, and one
fully-connected layer (fc). These layers focus on extracting
the common low-level features from all the tasks. From here
on, the network is divided into two branches. The top branch
is made of several fully-connected layers, normalization lay-
ers, and one gradient reversal layer R [Ganin and Lempitsky,
2015]. It aims to learn the task-common features. The bot-
tom branch consists of a few fully-connected layers, normal-
ization layers, and one router layer H. The goal is to distill
the task-specific knowledge for each task. For brevity, the
within-task classifiers are omitted in Figure 2. The softmax
function is used to compute the domain discrimination loss
and the label classification losses.
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Figure 2: The CNN-based TACO network.

We present a novel neural component, i.e, router H, to fa-
cilitate the classifier-adversarial training. It can be viewed as
a data router combined with the gradient reversal layer. The
gradient reversal layer [Ganin and Lempitsky, 2015] leaves
the input unchanged during forward propagation and reverses
the gradient by multiplying it with a negative scalar during
the backpropagation. The H layer has T input and output
gates respectively. We assume T = 3 here.The table in the
bottom-left of Figure 2 shows the rules of feed-forward and
backpropagation for H. Each H has T iteration periods. At
the first iteration, the task-specific features, v1, v2, and v3,
are routed to their own task-specific classifiers, C1

v , C2
v , and

C3
v , respectively. At the other iterations, the task-specific fea-

tures are fed to the other task-specific classifiers. For exam-
ple, at t2 iteration, v2, v3, and v1, are routed to C1

v , C2
v , and

C3
v , respectively. The ‘R’ in the backward column means that

the gradients should be reversed during the backpropagation,
while ’N’ means the normal backpropagation of gradients.

3.3 Algorithm
The TACO algorithm is showed in Algorithm 1. It consists
of two MinMax games played among feature extractor, do-
main discriminator, and tri-classifiers. Line 1 initializes the
net weights with pretrained nets such as AlexNet [Krizhevsky
et al., 2012] and VGGnet [Simonyan and Zisserman, 2015].
Lines 3-4 sample a batch of data and forward pass it through
the nets. Lines 5-8 optimize the domain discriminator and
tri-classifiers, while Lines 9-13 update the feature extractor.
The feature extractor involves in both MinMax games, which
is updated as follows:
• At t1 round, we update the feature extractor θig:

θig =argmin
θig

[
Lu(θg, θu)− αLd(θg, θd)

+ Liv(θ
i
g, θ̃

i
g, θ

i
v) + Lim(θig, θ

i
m)

] (6)

• At tk(2 ≤ k ≤ T ) round, we update the feature extractor
θig using the loss for other tasks:

θig = argmax
θig

Ljv(θ
j
g, θ

i
g, θ

j
v) (7)

where j = (i+ k − 1)%T (% is a mod operator).

Algorithm 1 The TACO Algorithm

Input: multi-task data xi(1 ≤ i ≤ T ), trade-off parameter
α, maximum iteration τmax, batch size b.

Output: predictions for unlabeled data.
1: Initialize the net weights with pretrained nets.
2: for number of iterations τmax do
3: Sample a batch of b instances from each task;
4: Forward pass the batch through the network and com-

pute the losses;
5: Update domain discriminatorD by ascending along its

stochastic gradient∇θd − αLd(θg, θd);
6: Update task-common classifier Cu by descending a-

long its stochastic gradient∇θuLu(θg, θu);
7: Update each task-specific classifier Civ by descending

along its stochastic gradient∇θivL
i
v(θ

i
g, θ̃

i
g, θ

i
v);

8: Update each within-task classifier Cim by descending
along its stochastic gradient∇θimL

i
m(θig, θ

i
m);

9: if at t1 round then
10: Update each feature extractor Gi by descending a-

long its stochastic gradient using Eq. 6;
11: else
12: Update each feature extractor Gi by ascending a-

long its stochastic gradient using Eq. 7;
13: end if
14: end for
15: Combine tri-classifiers to get the predictions.
16: Augment the training data with the pseudo labels.
17: Re-train the nets and get the final predictions.

The TACO algorithm is implemented using the Caffe
framework [Jia et al., 2014]. It can be trained using the min-
batch stochastic gradient descent method. We adopt learning
rate decaying strategy.

4 Experiments
We evaluate the proposed TACO algorithm in two scenar-
ios with domain shift, i.e., multi-task learning and semi-
supervised domain adaptation. The experiments are conduct-
ed on three image datasets, which are the standard bench-
marks for multi-task learning and domain adaptation.

The Office-Home1 [Venkateswara et al., 2017] dataset con-
sists of 15500 images from 4 different domains: Artistic im-
ages (A), Clip art (C), Product images (P) and Real-world
images (R). For each domain, the dataset contains images of
65 object categories collected in office and home settings.

The Office-312 [Saenko et al., 2010] dataset is a collection
of 4652 images in 31 categories collected from three distinct
domains, Amazon (A), DSLR (D), and Webcam (W). The A-
mazon domain consists of images at medium resolution typi-
cally taken in an environment with studio lighting conditions.
The DSLR domain consists of images that are captured with
a digital camera in realistic environments. The Webcam do-
main is composed of images recorded with a simple webcam
at low resolution.

1http://hemanthdv.org/OfficeHome-Dataset/
2https://people.eecs.berkeley.edu/∼jhoffman/domainadapt/
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Method 5% 10% 20%
A C P R Avg A C P R Avg A C P R Avg

STL 35.8 31.2 67.8 62.5 49.3 51.0 40.7 75.0 68.8 58.9 56.1 54.6 80.4 71.8 65.7
MTFL 40.1 30.4 61.5 59.5 47.9 50.3 35.0 66.3 65.0 54.2 55.2 38.8 69.1 70.0 58.3
RMTL 42.3 32.8 62.3 60.6 49.5 49.7 34.6 65.9 64.6 53.7 55.2 39.2 69.9 70.5 58.6
MTRL 42.7 33.3 62.9 61.3 50.1 51.6 36.3 67.7 66.3 55.5 55.8 39.9 70.2 71.2 59.3
DMTRL 49.2 34.5 67.1 62.9 53.4 57.2 42.3 73.6 69.9 60.8 58.3 56.1 79.3 72.1 66.5
MRN 53.3 36.4 70.5 67.7 57.0 59.9 42.7 76.3 73.0 63.0 58.5 55.6 80.7 72.8 66.9
TACO 59.7 48.3 75.3 65.5 62.3 66.9 63.8 81.1 79.9 72.9 71.1 70.6 86.6 79.0 77.1

Table 1: Classification accuracy on Office-Home based on VGGnet.

Method 5% 10% 20%
A W D C Avg A W D C Avg A W D C Avg

STL 88.9 73.0 80.4 88.7 82.8 92.2 80.9 88.2 88.9 87.6 91.3 83.3 93.7 94.9 90.8
MTFL 90.0 78.9 90.2 86.9 86.5 92.4 85.3 89.5 89.2 89.1 93.5 89.0 95.2 92.6 92.6
RMTL 91.3 82.3 88.8 89.1 87.9 92.6 85.2 93.3 87.2 89.6 94.4 87.0 96.7 93.4 92.4
MTRL 86.4 83.0 95.1 89.1 88.4 91.1 87.1 97.0 87.6 90.7 90.0 88.8 99.2 94.3 93.1
DMTRL 91.2 88.3 92.5 85.6 89.4 92.2 91.9 97.4 86.8 92.0 92.6 97.6 94.5 88.4 93.3
MRN 92.5 97.5 97.9 87.5 93.8 93.6 98.6 98.6 87.3 94.5 94.4 98.3 99.9 89.1 95.5
TACO 93.1 92.4 99.3 89.8 94.2 94.9 96.5 99.3 90.3 95.1 95.6 98.4 99.2 91.6 96.0

Table 2: Classification accuracy on Office-Caltech based on AlexNet.

The Office-Caltech dataset consists of 2533 images select-
ed from the 10 common categories shared by the Office-
31 dataset and the Caltech-2563 dataset. The Caltech-256
dataset is a collection of 30607 images in 256 categories
downloaded from Google Images. Hence, it yields four learn-
ing tasks corresponding to four domains: Amazon (A), Web-
cam (W), DSLR (D), and Caltech (C).

The initial learning rate is set to 0.001, and momentum is
0.9. The training iteration is set as τmax = 1000, and batch
size b = 20. We empirically set the parameter α = 0.1.

4.1 Multi-task Learning
We first evaluate TACO on both Office-Home and Office-
Caltech datasets in the multi-task learning scenario.

Protocols and Baselines
We follow the standard protocol [Zhang and Yeung, 2010;
Long et al., 2017a] for multi-task learning and randomly s-
elect 5%, 10%, and 20% samples from each task as trainset
and use the rest as testset, respectively. A half of trainset is
randomly chosen to select the optimal parameters. We repeat
five random experiments and report the average classification
accuracy on the testset.

We compare TACO with various methods: multi-task fea-
ture learning (MTFL) [Argyriou et al., 2008], multi-task rela-
tionship learning (MTRL) [Zhang and Yeung, 2010], robust
multi-task learning (RMTL) [Chen et al., 2013], deep single-
task learning (STL), deep multi-task learning with tensor fac-
torization (DMTRL) [Yang and Hospedales, 2017], and mul-
tilinear relationship networks (MRN) [Long et al., 2017a].
The former three are shallow multi-task learning algorithm,
while the latter two are deep multi-task learning methods.

AlexNet [Krizhevsky et al., 2012] or VGGnet [Simonyan
and Zisserman, 2015] pre-trained on ImageNet is used as base
networks. STL is based on AlexNet [Krizhevsky et al., 2012]
or VGGnet [Simonyan and Zisserman, 2015], and fine-tuned
for each task independently.

3http://www.vision.caltech.edu/Image Datasets/Caltech256/

Performance Comparison

Table 1 shows the classification accuracy on Office-Home
dataset using VGGnet [Simonyan and Zisserman, 2015] as
the base networks. Table 2 shows the results on Office-
Caltech dataset using AlexNet [Krizhevsky et al., 2012] as
the base networks. The results of the comparison methods are
quoted from the related papers [Argyriou et al., 2008; Chen
et al., 2013; Zhang and Yeung, 2010; Yang and Hospedales,
2017; Long et al., 2017a].

We have the following observations from the results. First,
the deep single-task learning method STL performs better
than the shallow multi-task learning approaches such as MT-
FL [Argyriou et al., 2008], MTRL [Zhang and Yeung, 2010],
and RMTL [Chen et al., 2013] on the Office-Home dataset
when the sampling ratio is relatively large (e.g., 10% or 20%),
verifying the superiority of CNN for feature learning. How-
ever, when the labeled data turn sparser (e.g., 5% in Office-
Home) or the domains are more similar (as in Office-Caltech),
the shallow multi-task learning methods become to show
their advantages by borrowing the strength from the related
tasks. Second, all the deep multi-task learning methods in-
cluding TACO, DMTRL [Yang and Hospedales, 2017], and
MRN [Long et al., 2017a] outperform both the deep single-
task learning method STL and the shallow multi-task learn-
ing approaches. It demonstrates that deep multi-task learn-
ing can further promote the performance by simultaneous-
ly learning the hierarchical features from data and sharing
knowledge across tasks. Third, our proposed TACO method
outperforms all the comparison methods on both datasets in
most case. The performance superiority of TACO over the
baselines becomes more significant on the relatively difficult
problem (i.e., Office-Home dataset). The strength of TACO
is that it disentangles the task-common and task-specific fea-
tures while respecting the discriminative structures, and fur-
ther enhances the performance by leveraging the complemen-
tary correlations between the decoupled views.
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4.2 Semi-supervised Domain Adaptation
We then evaluate TACO on the Office-31 dataset in the semi-
supervised domain adaptation [Ganin and Lempitsky, 2015;
Long et al., 2015] scenario, where labeled data in target do-
main are much sparser than that in source domain.

Protocols and Baselines
Since the Office-31 dataset has three domains, we build six
domain adaptation problems in total, i.e., A → W , A → D,
W → A, W → D, D → A, and D → W . We follow
the standard protocol [Saenko et al., 2010] for this dataset to
sample the labeled instances. For source domain, we sample
20 instances per category for the Amazon domain, and 8 in-
stances per category for the DSLR and Webcam domains. For
target domain, 3 labeled instances are randomly picked out
for each category. The remainder in each domain are used as
testset. We repeat five random experiments and report the av-
erage classification accuracy on the testset of target domain.

We compare TACO with state-of-the-art methods: domain
adaptive neural network (DaNN) [Ghifary et al., 2014], deep
domain confusion (DDC) model [Tzeng et al., 2014], deep
adaptation network (DAN) [Long et al., 2015], and DCSL
[Tzeng et al., 2015] which simultaneously aligns domain and
classes. We also compare TACO with three CNN baselines,
i.e., CNN-S, CNN-T, and CNN-M, which are trained using
source labeled data, target labeled data, and both source and
target labeled data, respectively. AlexNet [Krizhevsky et al.,
2012] pre-trained on ImageNet is used as base networks to
build the deep learning models.

Performance Comparison
Table 3 shows the classification performance on the Office-
31 dataset. The results of the comparison methods are quoted
from the related papers [Ghifary et al., 2014; Tzeng et al.,
2014; Long et al., 2015; Tzeng et al., 2015].

We have the following observations from the results. First,
CNN-S performs better on two adaptation problems, i.e.,
W → D and D → W , but worse on the other four prob-
lems, comparing to CNN-T. It suggests Webcam (W) and D-
SLR (D) are similar with each other, but different from Ama-
zon (A). CNN-M improves upon CNN-S and CNN-T by aug-
menting the training data. It also outperforms DaNN [Ghifary
et al., 2014] that is trained on a denoising auto-encoder, al-
though DaNN introduced the MMD loss to bridge the domain
gap. Second, the deep domain adaptation methods can pro-
mote the accuracy by aligning the domains with MMD-based
regularizations [Tzeng et al., 2014; Long et al., 2015] or us-
ing domain-adversarial training [Tzeng et al., 2015], or align-
ing the classes with soft labels [Tzeng et al., 2015]. Third, our
proposed TACO method outperforms the comparison algo-
rithms in all six adaptation problems. The results demonstrate
that TACO based on the adversarial-and-cooperative mecha-
nism is also effective in semi-supervised domain adaptation
scenarios where the labeled data are much sparser in the tar-
get domain than that in the source domain. Again, it verifies
that by decoupling the task-variance and task-invariance, we
are able to better manipulate the knowledge sharing among
tasks.

Method A→W A→D W→A W→D D→A D→W Avg

DDC 84.1 - - 96.3 - 95.4 -
DAN 85.7 - - 96.4 - 97.2 -
DaNN 53.6 59.9 37.3 83.5 38.2 71.2 57.3
CNN-S 56.5 64.6 42.7 93.6 47.6 92.4 66.2
CNN-T 80.5 81.8 59.9 81.8 59.9 80.5 74.1
CNN-M 82.5 85.2 65.2 96.3 65.8 93.9 81.5
DCSL 82.7 86.1 65.0 97.6 66.2 95.7 82.2
TACO 87.1 90.2 70.8 98.2 71.4 97.6 85.9

Table 3: Classification accuracy on Office-31 based on AlexNet.

4.3 Ablation Study and Convergence
We conduct an ablation study to investigate the impact of
TACO’s key components on performance. We compare
TACO with its two reduced versions, TACOα and TACOβ , as
well as the baseline STL. TACOα involves the generation of
task-common features only, while TACOβ involves the gener-
ation of both task-common and task-specific features. Figure
3 shows the ablation study results on Office-Home dataset.
The training ratio is fixed to 10%, and the number of itera-
tion is set to 1000. It shows that TACOα outperforms STL
by learning the task-invariant features, which help smooth
the domain shift. TACOβ improves upon TACOα by disen-
tangling the task-variance and task-invariance, which allows
for the fine-grained knowledge sharing among tasks. Finally,
TACO obtains the best performance by further making use of
mutual benefit from multiple views. The results suggest each
of TACO’s key components is indispensable. Also, Figure 3
shows that TACO runs stably and converges fast.
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Figure 3: Ablation study on Office-Home dataset.

5 Conclusion
We propose a novel TACO method for deep multi-task learn-
ing. TACO adopts an adversarial-and-cooperative mechanis-
m to learn both task-common and task-specific features. It
further leverages the disentangled multi-view features to en-
hance the discriminativeness.The experiments on the bench-
mark data demonstrate the effectiveness of the approach.
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